Quiz 1, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Let $A=\left[\begin{array}{ccc}2 & 4 & -2 \\ 0 & 2 & 2 \\ -2 & -2 & 0\end{array}\right]$ and let $B=\left[\begin{array}{ccc}1 & -1 & 4 \\ 0 & 4 & -1 \\ 2 & 2 & 0\end{array}\right]$.
(i) Find a symmetric matrix F and a skew-symmetric matrix D such that $A=F+D$.
(ii) Find the entries of the second column of the matrix $C=A B$ using linear combination of columns.
(iii) Find the entries of the third row of $L=B A$ using linear combination of rows.

QUESTION 2. Solve for x_{1}, x_{2}, x_{3} using the AUGMENTED method (you may finish your solution on the back)

$$
\begin{gathered}
x_{1}+x_{3}=5 \\
-2 x_{1}+x_{2}+2 x_{3}=7 \\
3 x_{1}-x_{2}+4 x_{3}=18
\end{gathered}
$$

Faculty information

Quiz 2, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Given the augmented matrix of a system of linear equations: $A=\left[\begin{array}{ccccc}0 & 1 & 4 & -2 & 5 \\ 1 & -1 & -4 & 3 & -4 \\ -2 & 2 & 8 & -5 & 6\end{array}\right]$. Find the solution set of the system.

QUESTION 2. Given the augmented matrix of a system of linear equations: $\left[\begin{array}{cccc}0 & 1 & 4 & -7 \\ a & -1 & -3 & 9 \\ 0 & -1 & b & 7\end{array}\right]$.

(USE THE BACK PAGE)

(i) For what values of a, b will the system be consistent?
(ii) For what values of a, b will the system have unique solution?
(iii) For what values of a, b will the system have infinity many solution?
(iv) For what values of a, b will the system be inconsistent?

Faculty information

Quiz 3, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Given a 4×4 matrix A such that $A^{-1}=\left[\begin{array}{cccc}2 & 3 & 0 & 1 \\ -2 & -2 & 1 & 1 \\ -4 & -6 & 1 & 1 \\ -2 & -3 & 0 & 4\end{array}\right]$. Find the solution set for the system of linear equations $A X=\left[\begin{array}{c}5 \\ -4 \\ -10 \\ -5\end{array}\right]$.
(If you wish you may finish your calculation on THE BACK PAGE)
QUESTION 2. Let $A=\left[\begin{array}{cccc}1 & 0 & 0 & -2 \\ -1 & 1 & 0 & 2 \\ -1 & 0 & 0 & 3 \\ -2 & 0 & 1 & 4\end{array}\right]$. Find A^{-1} if possible.

Faculty information

Quiz 4, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Let A be a 3×2 matrix. Given $A \overrightarrow{2 R_{1}, 3 R_{3}} B=\left[\begin{array}{ll}2 & 4 \\ 1 & 5 \\ 6 & 9\end{array}\right] \xrightarrow[-R_{1}+R_{3} \rightarrow R_{3}]{ } C \overrightarrow{R_{1} \leftrightarrow R_{2}} D$.
(i) Find elementary matrices F_{1}, F_{2}, F_{3} such that $F_{1} F_{2} F_{3} A=C$.
(ii) Find elementary matrices K_{1}, K_{2} such that $K_{1} K_{2} D=B$.
(iii) Find the matrix A.

QUESTION 2. Let $A=\left[\begin{array}{cc}7 & 5 \\ -2 & 10\end{array}\right]$. If possible, find A^{-1}.

QUESTION 3. For what values of a will the matrix $\left[\begin{array}{cc}a & -7 a \\ 3 & a\end{array}\right]$ be invertible?

Faculty information

Quiz 5, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Given A, B are 4×4 matrices such that $\operatorname{det}(A)=-2$ and $\operatorname{det}(B)=0.5$. Find
a) $\operatorname{det}\left(A^{-1} B^{T}\right)=$
b) $\operatorname{det}(2 B)=$
c) $\operatorname{det}\left(0.5 A^{2}\right)=$

QUESTION 2. Let $A=\left[\begin{array}{ccc}7 & 5 & 1 \\ -2 & 1 & 0 \\ 4 & 0 & 2\end{array}\right]$. Use the definition of determinant to find $\operatorname{det}(A)$.

Faculty information

Quiz 7, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. 1) Let $F=\left\{A \in R^{2 \times 2} \mid \operatorname{det}(A)=0\right\}$. Is F a subspace of $R^{2 \times 2}$? I say NO. Justify my answer or prove me wrong!
2)Let $M=\left\{f(x) \in P_{3} \mid f(-2)=0\right\}$. Convince me that M is a subspace of P_{3}.
3) Are $(1,-1,2,0),(-1,1,-2,5),(2,-2,4,5)$ independent? explain

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz 8, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. 1) Let $F=\left\{A \in R^{2 \times 2} \left\lvert\, A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right.\right\}$. Is F a subspace of $R^{2 \times 2}$? I say NO. Justify my answer or prove me wrong!
2)Let $M=\left\{f(x) \in P_{3} \quad \mid \quad f(-2)=0\right.$ OR $\left.\quad f(0)=0\right\}$. Convince me that M is not a subspace of P_{3}.
3) Let $D=\left\{3 x^{2}+x-1,-3 x^{2}+4,-6 x^{2}+x+9\right\}$. Find $\operatorname{dim}(D)$. Give me two different basis for D

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz 9, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Let $A=\left[\begin{array}{ccc}3 & 2 & 5 \\ 0 & 5 & 1 \\ 0 & 0 & -2\end{array}\right]$
(i) Find $C_{A}(x)$ and the eigenvalues of A.
(ii) For each eigenvalue a of A find E_{a} and write it as a span of some basis.
(iii) Is A diagnolizable? If yes find a diagonal matrix D and an invertible matrix W such that $W^{-1} A W=D$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

