Quiz 1, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Let
$$A = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 2 & 2 \\ -2 & -2 & 0 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 1 & -1 & 4 \\ 0 & 4 & -1 \\ 2 & 2 & 0 \end{bmatrix}$.

(i) Find a symmetric matrix F and a skew-symmetric matrix D such that A = F + D.

(ii) Find the entries of the second column of the matrix C = AB using linear combination of columns.

(iii) Find the entries of the third row of L = BA using linear combination of rows.

QUESTION 2. Solve for x_1, x_2, x_3 using the AUGMENTED method (you may finish your solution on the back)

$$x_1 + x_3 = 5$$

-2x₁ + x₂ + 2x₃ = 7
3x₁ - x₂ + 4x₃ = 18

Faculty information

MTH 512 Advanced Linear Algebra Spring 2015, 1–1

Quiz 2, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Given the augmented matrix of a system of linear equations: $A = \begin{bmatrix} 0 & 1 & 4 & -2 & 5 \\ 1 & -1 & -4 & 3 & -4 \\ -2 & 2 & 8 & -5 & 6 \end{bmatrix}$. Find the solution set of the system.

	0	1	4	-7]	
QUESTION 2. Given the augmented matrix of a system of linear equations:	a	-1	-3	9	
	0	-1	b	7]	

(USE THE BACK PAGE)

(i) For what values of a, b will the system be consistent?

- (ii) For what values of a, b will the system have unique solution?
- (iii) For what values of a, b will the system have infinity many solution?
- (iv) For what values of a, b will the system be inconsistent?

Faculty information

–, ID —–

© copyright Ayman Badawi 2015

MTH 221 Linear Algebra Spring 2015, 1–1

Quiz 3, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Given a 4 × 4 matrix A such that $A^{-1} = \begin{bmatrix} 2 & 3 & 0 & 1 \\ -2 & -2 & 1 & 1 \\ -4 & -6 & 1 & 1 \\ -2 & -3 & 0 & 4 \end{bmatrix}$. Find the solution set for the system of $\begin{bmatrix} 5 \end{bmatrix}$

linear equations $AX = \begin{bmatrix} 5 \\ -4 \\ -10 \\ -5 \end{bmatrix}$.

(If you wish you may finish your calculation on THE BACK PAGE)

QUESTION 2. Let $A = \begin{bmatrix} 1 & 0 & 0 & -2 \\ -1 & 1 & 0 & 2 \\ -1 & 0 & 0 & 3 \\ -2 & 0 & 1 & 4 \end{bmatrix}$. Find A^{-1} if possible.

Faculty information

Quiz 4, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Let A be a 3×2 matrix. Given $A \xrightarrow{2R_1, 3R_3} B = \begin{bmatrix} 2 & 4 \\ 1 & 5 \\ 6 & 9 \end{bmatrix} \xrightarrow{-R_1 + R_3 \to R_3} C \xrightarrow{R_1 \leftrightarrow R_2} D.$ (i) Find elementary matrices F_1, F_2, F_3 such that $F_1F_2F_3A = C$.

(ii) Find elementary matrices K_1, K_2 such that $K_1K_2D = B$.

(iii) Find the matrix A.

QUESTION 2. Let
$$A = \begin{bmatrix} 7 & 5 \\ -2 & 10 \end{bmatrix}$$
. If possible, find A^{-1} .

QUESTION 3. For what values of *a* will the matrix $\begin{bmatrix} a & -7a \\ 3 & a \end{bmatrix}$ be invertible?

Faculty information

© copyright Ayman Badawi 2015

MTH 221 Linear Algebra Spring 2015, 1–1

Quiz 5, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Given A, B are 4×4 matrices such that det(A) = -2 and det(B) = 0.5. Find

a) $det(A^{-1}B^{T}) =$

b) det(2B) =

 $c)det(0.5A^2) =$

QUESTION 2. Let $A = \begin{bmatrix} 7 & 5 & 1 \\ -2 & 1 & 0 \\ 4 & 0 & 2 \end{bmatrix}$. Use the definition of determinant to find det(A).

Faculty information

__, ID ____

MTH 221 Linear Algebra Spring 2015, 1–1

Quiz 7, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. 1) Let $F = \{A \in \mathbb{R}^{2 \times 2} \mid det(A) = 0\}$. Is F a subspace of $\mathbb{R}^{2 \times 2}$? I say NO. Justify my answer or prove me wrong!

2)Let $M = \{f(x) \in P_3 \mid f(-2) = 0\}$. Convince me that M is a subspace of P_3 .

3) Are (1, -1, 2, 0), (-1, 1, -2, 5), (2, -2, 4, 5) independent? explain

Faculty information

Quiz 8, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. 1) Let $F = \begin{cases} A \in \mathbb{R}^{2 \times 2} \mid A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{cases}$. Is F a subspace of $\mathbb{R}^{2 \times 2}$? I say NO. Justify my answer or prove me wrong!

2)Let $M = \{f(x) \in P_3 \mid f(-2) = 0 \text{ } OR f(0) = 0\}$. Convince me that M is not a subspace of P_3 .

3) Let $D = \{3x^2 + x - 1, -3x^2 + 4, -6x^2 + x + 9\}$. Find dim(D). Give me two different basis for D

Faculty information

Quiz 9, MTH 221, Spring 2015

Ayman Badawi

QUESTION 1. Let
$$A = \begin{bmatrix} 3 & 2 & 5 \\ 0 & 5 & 1 \\ 0 & 0 & -2 \end{bmatrix}$$

(i) Find $C_A(x)$ and the eigenvalues of A.

(ii) For each eigenvalue a of A find E_a and write it as a span of some basis.

(iii) Is A diagonalizable? If yes find a diagonal matrix D and an invertible matrix W such that $W^{-1}AW = D$.

Faculty information